Apache Flink 集成

ProtonBase 是一款兼容 PostgreSQL 协议的高性能分布式数据库,支持标准SQL语法和PG生态工具链。本文将介绍如何通过Apache Flink实现高效的数据写入ProtonBase,重点包括DataStream API和Flink SQL两种写入方式,也介绍如何通过 Apache Flink 读取 CDC 增量变更。

环境准备

版本兼容性

  • Flink版本:1.14+ (推荐1.16+)
  • JDBC驱动:PostgreSQL JDBC驱动(推荐 42.5+)

依赖配置

在Flink项目中添加JDBC驱动依赖:

<!-- Maven配置 -->
<dependency>
    <groupId>org.postgresql</groupId>
    <artifactId>postgresql</artifactId>
    <version>42.5.0</version>
</dependency>

Flink SQL与ProtonBase类型映射

Flink SQL类型ProtonBase类型
BOOLEANBOOLEAN
TINYINTSMALLINT
SMALLINTSMALLINT
INTINTEGER
BIGINTBIGINT
FLOATREAL
DOUBLEDOUBLE PRECISION
DECIMAL(p,s)NUMERIC(p,s)
VARCHAR(n)VARCHAR(n)
CHAR(n)CHAR(n)
DATEDATE
TIMETIME
TIMESTAMPTIMESTAMP
ARRAYARRAY
MAPJSONB
ROWJSONB

使用 Data Stream API 写入

使用JDBC Sink

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 
// 定义数据流
DataStream<User> userStream = env.addSource(...);
 
// 配置JDBC连接参数
JdbcConnectionOptions jdbcOpts = new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
    .withUrl("jdbc:postgresql://protonbase-host:5432/dbname")
    .withDriverName("org.postgresql.Driver")
    .withUsername("username")
    .withPassword("password")
    .build();
 
// 创建JDBC Sink
userStream.addSink(JdbcSink.sink(
    "INSERT INTO users (id, name, age) VALUES (?, ?, ?)",
    (ps, user) -> {
        ps.setInt(1, user.getId());
        ps.setString(2, user.getName());
        ps.setInt(3, user.getAge());
    },
    jdbcOpts));
 
env.execute("ProtonBase Sink Job");

批量写入优化

JdbcExecutionOptions execOpts = new JdbcExecutionOptions.Builder()
    .withBatchSize(1000)  // 每批记录数
    .withBatchIntervalMs(200)  // 批处理间隔(毫秒)
    .withMaxRetries(3)  // 失败重试次数
    .build();
 
userStream.addSink(JdbcSink.sink(
    "INSERT INTO users (id, name, age) VALUES (?, ?, ?)",
    (ps, user) -> {
        ps.setInt(1, user.getId());
        ps.setString(2, user.getName());
        ps.setInt(3, user.getAge());
    },
    execOpts,
    jdbcOpts));

使用 Flink SQL 写入

创建ProtonBase Catalog

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
 
// 注册ProtonBase Catalog
tableEnv.executeSql(
    "CREATE CATALOG protonbase WITH (" +
    "  'type'='jdbc'," +
    "  'default-database'='dbname'," +
    "  'username'='username'," +
    "  'password'='password'," +
    "  'base-url'='jdbc:postgresql://protonbase-host:5432'" +
    ")");
 
// 设置当前Catalog
tableEnv.useCatalog("protonbase");

通过Flink SQL写入数据

// 注册Flink表(源表)
tableEnv.executeSql(
    "CREATE TABLE source_table (" +
    "  id INT," +
    "  name STRING," +
    "  age INT" +
    ") WITH (" +
    "  'connector' = 'kafka'," +
    "  'topic' = 'user_topic'," +
    "  'properties.bootstrap.servers' = 'kafka:9092'," +
    "  'format' = 'json'" +
    ")");
 
// 执行写入
tableEnv.executeSql(
    "INSERT INTO users " +  // ProtonBase中已存在的表
    "SELECT id, name, age FROM source_table");

或者通过 Flink SQL 开发控制台提交作业:

CREATE TEMPORARY TABLE users_sink (
 id INTEGER,
 name STRING,
 age INTEGER
) WITH (
 'connector' = 'jdbc',
 'url' = 'jdbc:postgresql://protonbase-host:5432/dbname',
 'table-name' = 'users',
 'username' = 'username',
 'password' = 'password',
 'driver' = 'org.postgresql.Driver',
 'sink.buffer-flush.max-rows' = '1000',
 'sink.buffer-flush.interval' = '1s',
 'sink.max-retries' = '3'
);
 
 
 
INSERT INTO users_sink
SELECT * FROM source_table;

常用配置参数

参数名说明推荐值
sink.buffer-flush.max-rows批量写入最大行数1000-5000
sink.buffer-flush.interval批量写入间隔1s
sink.max-retries失败重试次数3
sink.parallelismSink并行度与ProtonBase节点数相同
connection.max-retry-timeout连接超时时间30s

更多配置参数,参考 Apache Flink JDBC SQL Connector (opens in a new tab)

性能调优

SQL作业并行度设置

在SQL中设置:

SET 'parallelism.default' = '8';

批量写入参数

CREATE TABLE protonbase_sink (
  ...
) WITH (
  ...
  'sink.buffer-flush.interval' = '1s',
  'sink.buffer-flush.max-rows' = '1000',
  'sink.parallelism' = '8'
);

使用Flink消费CDC

Flink可以通过postgres-cdc connector获取ProtonBase的CDC数据。

前置条件

  • 数据库已开通逻辑复制(WAL_LEVEL=logical)
  • Flink 运行时环境与ProtonBase 数据库网络可达
  • 连接数据库的用户需要具备Replication权限,或能够自动创建Slot(复制槽)和 Publication。

更多详情参考 CDC 订阅

Publication & Slot 资源管理

建议提前创建好 publication,publication 是 PG 协议中服务器端的事件发布及过滤机制,可以选择发布部分表、部分事件、也可以合并分区事件到分区父表。如果不在数据库中显性创建 publication,则 flink CDC connector 会创建一个默认的 dbz_publication,该 publication 会订阅所有表的所有变更事件,然后在 flink 客户端执行时在本地过滤,效率更低,网络开销更大。在 Flink Connector 中用'debezium.publication.name' = 'pub-name' 指定使用的 publication,多个 flink 作业可以共用相同的 publication。

Slot 是用来记录CDC 事件消费端进度(即 LSN)的机制,不同的消费端应该选择不同的 Slot,跟进不同的消费进度。建议提前创建好 Slot,使用 noexport_snapshot 参数,存储空间更节省。不同的 flink 程序应该使用不同的 slot。方式如下:

SELECT * FROM pg_create_logical_replication_slot('flink_cdc_slot', 'pgoutput', false, true);

不再使用的 Flink 消费作业,需要显性删除 slot,释放被 PIN 住的存储空间,避免存储空间浪费。

SELECT pg_drop_replication_slot('flink_cdc_slot');

Slot 的更新依赖 Flink 的 checkpoint 执行,checkpoint 会更新 Slot 的LSN,长期不更新 LSN,会使得历史状态被 PIN 住,造成存储浪费。CDC 消费只支持从最近一次完成的 checkpoint 启动,不支持选择历史版本的 checkpoint,因为每个 checkpoint 里记录了历史消费的 LSN 进度,一旦 checkpoint 后,LSN 消费进度会收到 confirm 请求,被 confirm 后,slot 状态向前移动,因此历史 LSN 不再可以被消费。所以,无论flink作业启动checkpoint往后倒退多少,实际都只会从最后一次成功的checkpoint位点读取数据。

使用Flink SQL例子

以下例子中,首先通过CDC方式读取Source表,然后写入Sink表。

CREATE TEMPORARY TABLE source_cdc (
        ins_time timestamp(6) NULL,
        store_id string NULL,
        store_code string NOT NULL,
        store_name string NULL,
        time_section_no bigint NULL,
        stat_date string NOT NULL,
        PRIMARY KEY (store_code,stat_date) NOT ENFORCED
) WITH (
  'connector' = 'postgres-cdc',
  'hostname' = 'host-url',
  'port' = '5432',
  'username' = 'xxxx',
  'password' = 'xxxx',
  'database-name' = 'dbname',
  'schema-name' = 'schemaname',
  'table-name' = 'tablename',
  -- 建议在数据库中提前创建好 Slot,并管理 Slot 生命周期;如果未创建,Flink CDC 会在启动时创建 Slot,自动创建的 Slot 无NOEXPORT_SNAPSHOT属性,会占用额外存储空间。
  'slot.name' = 'flink_cdc_slot',
  --解码插件,仅支持 pgoutput 解码
  'decoding.plugin.name' = 'pgoutput',
  --当前仅支持 never 表示从 Slot 创建时的点位开始同步,只同步实时变更,不同步全量,当前引擎还不支持读取全量。
  'debezium.snapshot.mode' = 'never',
  -- 当使用 pgoutput 解码时,订阅可以指定 publication,optional,如果不写,会自动创建dbz_publication,订阅所有表的更新。
  'debezium.pulication.name' = 'pub-name'
);
 
CREATE TEMPORARY TABLE sink_kafka(
        store_id string NULL,
        cnt bigint NOT NULL,
        PRIMARY KEY (store_id) NOT ENFORCED
) WITH (
  'connector' = 'kafka',
  'topic' = 'topic-name',
  'properties.bootstrap.servers' = 'servers',
  'key.format' = 'json',
  'key.fields' = 'store_id',
  'value.format' =  'debezium-json',
  'value.debezium-json.schema-include' = 'false'
);
 
INSERT INTO sink_kafka
SELECT store_id, count(*) as cnt
FROM source_cdc GROUP BY store_id;

监控与运维

SQL作业监控

通过Flink Web UI可以监控:

  • 写入速率(records/s)
  • 各算子的背压情况
  • Checkpoint状态

日志配置

# log4j.properties
log4j.logger.org.apache.flink.table.runtime=INFO
log4j.logger.org.postgresql=INFO

常见问题处理

类型映射问题

症状: 字段类型不匹配导致写入失败。

解决方案:

  1. 在DDL中明确指定类型映射:
CREATE TABLE protonbase_sink (
  id INT,
  name VARCHAR(100),  -- 明确长度
  create_time TIMESTAMP(3)
) WITH (...);
  1. 使用CAST转换类型:
INSERT INTO protonbase_sink
SELECT id, name, CAST(create_time AS TIMESTAMP(3)) FROM source_table;

性能瓶颈

症状: SQL作业吞吐量低。

解决方案:

  1. 增加并行度
  2. 调整批量参数
  3. 检查ProtonBase集群负载
  4. 优化SQL查询逻辑